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In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space 
Telescope (HST). Such a mission would require estimates of the HST attitude and rates 
in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to 
be equipped with vision-based sensors, capable of estimating the relative attitude between 
HST and HRV. The inertial HST attitude is derived from the measured relative attitude 
and the HRV computed inertial attitude. However, the relative rate between HST and 
HRV cannot be measured directly. Therefore, the HST rate with respect to  inertial space 
is not known. Two approaches are developed to  estimate the HST rates. Both methods 
utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non- 
linear estimator is developed. The nonlinear approach estimates the HST rate through an 
estimation of the inertial angular momentum. Second, a linearized approach is developed. 
The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both 
methods are given. Even though the development began as an application for the HST 
robotic servicing mission, the methods presented are applicable to any rendezvous/capture 
mission involving a non-cooperative target spacecraft. 

I. Introduction 

The Hubble Space Telescope (HST) was launched in 1990 and has undergone four servicing missions 
throughout its mission lifetime to replace instruments, sensors, solar arrays, power units, and cooling systems. 
Additional servicing will again be necessary to  extend HST’s science life. The batteries are predicted to fail 
as early as 2009, and the pointing control system may be reduced to a two-gyro mode by as early as 2007. 
On March 12, 2004 former NASA Administrator Sean O’Keefe asked the HST program to investigate robotic 
servicing of the HST to extend the science life. In addition to replacing the batteries and gyros, the servicing 
mission would install two new instruments and would provide the ability to safely de-orbit HST. 

The original robotic servicing mission concept included two vehicles, a de-orbit module (DM) and an 
ejection module (EM) with the robotic arm for servicing. The DM docks with HST and provides batteries 
and gyros for the stacked HST-DM configuration. The DM also provides the reentry capability for the 
stacked configuration. The EM carries the robotic arm for servicing, as well as the replacement instruments. 
Following the servicing, the EM separates from the HST-DM stack and safely de-orbits. An alternative 
concept to the robotic servicing mission was to provide a de-orbit only capability for HST. A modified DM 
docks with HST and provides for a safe re-entry of HST. In this work we refer to  the vehicle docking with 
HST as the Hubble Robotic Vehicle (HRV). 

In order for the HRV to dock with HST, the HRV must match the rotation rates of HST. If the batteries 
and gyros both fail, HST will be tumbling with unknown rates. The HRV will be equipped with sensors 
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capzbk of estimating the relative attitude between HST and HRV. The sensors utilize vision and feature 
recognition measurements to produce a relative quaternion. The HRV will also be equipped with star cameras 
and gyros which will provide the inertial orientation and body rates of the HRV. Combining the relative 
attitude and HRV inertial attitude provides a measurement of the HST attitude. However, the relative rates 
or HST body rates cannot be measured directly. 

We present and compare two approaches for estimating the HST body rates in the event that HST 
is tumbling and no a priori  rate information is available. First a nonlinear estimator is developed. The 
nonlinear approach determines the HST rate through an estimation of the inertial angular momentum. The 
stability properties of the estimator are addressed first for perfect attitude measurements. Errors are then 
introduced into the HST attitude. The primary error source considered is the uncertainty in the relative 
attitude quaternion provided by the vision and feature recognition sensors. The results of the nonlinear 
approach are then compared to  a pseudo-linear Kalman filter. 

Even though this work was originally developed for the HST/HRV scenario, it can easily be applied to 
other 'non-cooperative' rendezvous/capture scenarios. A 'non-cooperative' scenario is one in which the body 
rates of the target vehicle are not available, and the target vehicle does not carry any devices to improve the 
relative attitude estimation, such as reflectors or visible beacons. 

The paper is outlined as follows. The next section presents definitions and mathematical background. 
Section I11 presents the nonlinear estimation algorithm. Section IV discusses how measurement errors affect 
the nonlinear algorithm. Section V presents an overview of the pseudo-linear Kalman filter. Section VI 
includes results, followed by conclusions in the last section. 

11. Attitude and Angular Rate Definitions 

The attitude of a spacecraft can be represented by a quaternion, consisting of a rotation angle and unit 
rotation vector e, known as the Euler axis, and a rotation q5 about this axis so that' 

esin($) 
q =  [ cos($) ] = [ ; ] 

where q is the quaternion, partitioned into a vector part, E ,  and a scalar part, 77. The Hubble Space 
Telescope (HST) attitude quaternion is designated as q,, which defines the rotation from inertial to HST 
body coordinates. The Hubble Robotic Vehicle (HRV) attitude quaternion is designated as q h .  

The rotation, or attitude, matrix can be computed from the quaternion components as' 

R R(q)  = (v2 - + ~ E E ~  - 277S(E) ( 2 )  

where 13 is a 3x3 identity matrix and S ( E )  is a matrix representation of the vector cross product operation. 

Note also that R ( q ) E  = E .  

A relative rotation between coordinate frames is computed as2 I >  

Using the definition given in equation 3, the relative attitude quaternion from HRV body coordinates to 
HST body coordinates is then 

(4) 1 9, = Qv @ 9; 
The angular velocity of the HST body coordinates with respect to inertial space, resolved in HST body 

coordinates, is designated as w,. Similarly the angular velocity of the HRV in HRV body coordinates is 
designated as W h .  The angular velocity of HST relative to HRV, given in HST body coordinates, is given as 

W: = W v  - R r W h  (5) 

where R, is the relative attitude matrix which transforms w h  into HST body coordinates. 
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111. HST Nonlinear Angular Velocity Estimator 

The following angular velocity estimator is intended for the scenario in which the HST batteries have died. 
No telemetry is available from HST. HRV is equipped with a quaternion star tracker, which gives q h ,  and 
some sensor system which produces the relative quaternion, qr.  The approach does not yet account for any 
errors in the measured quaternions, the HST inertia matrix, or the computation of the external torques on 
HST. The HST angular velocity is estimated in the inertial coordinate system through the estimation of the 
inertial angular momentum. The HST angular velocity in body coordinates is computed by a transformation 
of the inertial angular velocity. In the following developments, the time argument is omitted to simplify the 
notation. 

1 
I, ,. 

The angular momentum in inertial coordinates is defined as 

h i , v  = Ii,uwi,v 

where Ii,, is the HST inertia matrix and wi,,, is the angular velocity, both in inertial coordinates. Note 
that I,,, = RTI,R,, where R ,  is the HST attitude matrix defining the transformation from inertial to HST 
body coordinates. I ,  is the HST inertia matrix in body coordinates, assumed to be constant. The kinematic 
equation for the quaternion is given as 

( 6 )  
1 1 1 

4, = 5Q(qV)Wv = ;Q(q,)RvWi,u = -Q(q,)Il'Rvha,w 2 

where 

where, by inspection, Q1(q,) = ~ ~ 1 3  + S(E,). The kinematic equation for the attitude matrix is3 

R, = -S(w,)R, (8) 

Note that the q, (and therefore the attitude matrix I&,) is supplied by the HRV measured inertial attitude 
and the measured relative attitude. Using equation 4 

q v  = qr @ q h  

R, = RrRh 

I 

(9) 

Similarly 

Euler's equation describes the dynamics of a rigid spacecraft. Euler's equation for HST is given in inertial 
coordinates as4 

hs,v = Ts,v (10) 

T,,u is the external torque acting on HST, resolved in inertial coordinates. 
Define the estimated angular momentum as 

h s > u  = Iz)uGz,v (11) 

where Ds,, is the estimated angular velocity in inertial coordinates. The estimated angular velocity in body 
coordinates is then 

Lj, = R,3,,, = &,I ,~~h, , ,  = Il 'R,h,,,  

Using equation 1, define the predicted HST quaternion as 

The attitude error is defined as the relative orientation between the predicted attitude 4, and the attitude 
provided by the measured attitude, 9,. The attitude error is 
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Wiiowiiig the estimators proposed in Refs. 5 ,  6, and 4, a state estimator for thc HST attitude and angular 
momentum is defined as 

(13) 
1 b, = ,Q(B,)R(~,(t))'[l,-lRUhi,,,  + kE,sign(ij,)] 

(14) 
a T -1 hi,,, = Ti,,, + -R,, I ,  d,,sign(ij,) 2 

The term R(ij,(t))= in equation 13 transforms the angular velocity terms from the body frame to the 
predicted attitude frame. The gain k is chosen as a positive constant. Similarly, the learning rate, a, is also 
a positive constant. Essentially, 4, is a prediction of the attitude at time t,  propagated with the kinematic 
equation using the estimated angular momentum. 

The kinematic equation for the attitude error quaternion, i j , ,  has the same form as the quaternion 
kinematic equation in equation 6. The angular velocity associated with the attitude error quaternion is the 
difference between the angular velocity of the body coordinates and the angular velocity of the estimator 
coordinates (resolved in body  coordinate^).^ Therefore, with equation 6, the definition given in equation 
7, equation 13, and noting that R(G,(t))E, = Zu (since E,, points along the eigenaxis of the rotation), the 
kinematic equation for G,, is given as 

Let hi,, = hi.,, - hi . , .  The derivative of hi,, is 

ii,,, = - ~ R ~ ~ ; 1 ~ , , s i g n ( ~ , )  2 (16) 

Note that the equilibrium states for 15 and 16 are 

[G,. h f , ] = [ O  0 0 &1 0 0 0 3  

Proof of stability: Choose a Lyapunov function as (note that the time argument is omitted from the 
variables on the right side of the equation for clarity) 

V ( t )  is continuous. The derivative of V ( t )  is 

Noting that E:& + ij,$O = 0 (including the left and right derivatives of ij,, = 0), for all t ,  equation 17 is 

k -T-  V( t )  = - - € , E ,  
2 

This establishes that hi,,,, E,, and ij, are globally, uniformly bounded. Moreover, V( t )  is a continuous, twice 
differentiable function with 

k 
2 

VO(t) = --~Q1(&)[I;lRuhi,, - kE,,sign(ij,)] 

which is bounded. Barbalat's lemma then shows that llE,,[l -+ 0 as t -+ 0 0 . ~  

format, as a linear time-varying systemg k( t )  = A ( t ) z ( t )  where 
Since all signals in the estimator are bounded, the system 15 and 16 can be further analyzed, in the given 

x ( t ) =  [ .5 ] 
h i , u  
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, 

1 - 4 sign(iiv )Q 1 (@,, 
9 sign(+,,)R:I;l 0 

Q 1 (4, 1; R, A(t)  = 

where, by virtue of the above Lyapunov analysis, all terms in the matrix A(t )  are known to be bounded 
for all t 2 t o .  Rewriting V ( t )  as V ( t )  = -z(t)'C'Cz(t) 5 0, where C = [ f i 1 3  0 1 ,  Theorem 4.5 and 
the discussion on pp.626-628 in Ref. 9 shows that the equilibrium point x ( t )  = 0 of this equivalent system 

properties are unchanged under output feedback,' ( A ( t ) ,  C) are UCO if the pair (A(t)-K(t)C, C) is uniformly 
observable for any piecewise, continuous and bounded matrix K( t ) .  Choose K ( t )  as 

1 is exponentially stable if the pair ( A ( t ) ,  C) is uniformly completely observable (UCO). Since observability 
I, + 

1 - &kdiitJ) Qi (@,,I [ Gsign(ij,,)R:I;l 
K ( t )  = 

K ( t )  is piecewise continuous based on the following properties. Note from the above Lyapunov analysis that 
11&,,11 --f 0. Since llQv112 = 1 = I I & , 1 1 2  + lij,I2 for any time, t ,  there exists a time, T > 0, such that 11fjV11 > 0 
for all t > T. Since i j, therefore cannot pass through zero for t > T ,  sign(3,) is constant for all t > T and, 
hence, K ( t )  is a piecewise continuous function of time. 

The state transition matrix for the pair (A( t )  - K(t)C, C) is 

where C(T, t )  = 
is then" 

st' Q1(Q,,(u))I;l&(u)dg, with Q1(Qv) defined in equation 7. The observability Grammian 

The system is UCO if there exists a T > 0 and positive constants a1 < m,a2 > 0 such that, for all 
t 2 to ,a11 _> W ( t ,  t + T )  2 azI. Using Lemma 13.4 of ref. 9, this property is assured if QI(@,)I;~R,,  and 
$(Q1(Q,)I;lR,) are bounded, and there exist positive constants T2, PI,  and a finite constant p2 such that, 
for all t _> t o ,  I 

I, ,A 

t+Tz 
P2I3 2 1 RrFCIQ1(Q' , )TQ1(Qy)~~lR,d~ 2 P1I3 (21) 

Q1(G,)IV-'& is bounded, since all the signals in the estimator are bounded and the spacecraft inertia is 
bounded, hence the upper bound in 21 is satisfied. Substituting the equality Q1(Q,)TQl(fj,,) = I3 - E& 
into equation 21 results in 

Recall that it has been shown that llZ,II + 0 asymptotically. Thus, for any 6 > 0, there exists a Tl(6) > to 
such that 11&,11 < 6 for all t 2 t o  +TI.  Taking any 6 < 1, any T2 > T I ,  and any x in Et3 

where A,,, and Am,,, are the maximum and minimum eigenvalues of I l l .  Finally, &Q1(Q,)Il l& is 
bounded, since all the terms in 15 are bounded. The 
PE condition is satisfied, and therefore E, and hi,, approach zero exponentially fast, i.e I(Gv(( --t (ILJ,(( 
exponentially fast. 

This demonstrates the required UCO property. 

IV. Error Sources 

The analysis provided in Section 111 is for the ideal scenario with no errors in any of the measurements 
needed for the estimator. In reality, the measurements will be corrupted by errors. The primary error source I 

I, ,. 
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considered here is the error in the relative attitude measurement used to derive the HST attitude quaternion. 
The resulting error in the HST attitude quaternion leads also to an error in the computation of the gravity 
gradient torque, the dominant external torque acting on HST. The following analysis considers how the HST 
attitude error affects the estimator stability and convergence properties. 

The measured HST quaternion, qv,m, is written as 

where 6qerr is the error between the true HST quaternion, q,, and qv,m. Recall that q, results from the 
product of the HRV relative attitude quaternion, q,, and the HRV inertial attitude quaternion, q h ,  shown 
in equation 9. The error is written as 

r 1 

From 24, the rotation matrices are given as 

Rv,m = R(qv ,m)  = R ( S q e r r ) R ( q v )  = R ( S q e r r ) h  (25) 

Gv,m S q e r r  @ G v  (26) 

R(Gv,m) = R ( & q e r r ) R ( G v )  (27) 

Multiplying both sides of equation 24 by 4, gives 

Similarly, 

Since the true quaternion is unknown, equations 13 and 14 cannot be implemented. Instead, qv,rn is used 
in place of q,, resulting in 

(28) 
1 6, = 5 Q (4,) R(Gv,m (t))'[L1 % , m k , v  + kgu,rnsign(fiv,rn)I 

A1 and A2 are both bounded. A, results from the discrepancy in the HST inertia in the inertial frame due 
to the attitude error. A2 results directly from the attitude error. 

Next, equation 29 is analyzed. Recall that the true angular momentum is driven by the external torques 
acting on HST, shown in equation 10. The dominant external torque acting on HST is gravity gradient 
torque. The gravity gradient torque in inertial coordinates is given as" 

I 
If 

I '  
2,u 

where p is the earth's gravitational parameter, T , , ~  is the magnitude of the HST inertial position vector, and 
rzv is the inertial position unit vector. The estimated torque in equation 29 is computed as 
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Substituting equation 25 into 32, Ti,, is written as 

Ti,u = ---S(r~,)R~I,R,,r~, 3P 

A3 = ~ S ( r ~ , ) [ R ~ , I , R u , m  3P 

+ A3 = Ti,u + A3 
Ti”,, 

where 
- R ~ I u R u 1 ~ ~ ,  

1 Substituting 33 and 25 into 29 results in 
f, L 

hi,, = Ti,, + A3 + ?RzI;’Z,sign(f,) + A4 2 

I, i 

where 
(Y 

A4 = - 2 RT [R( 6qe,.,.) I; &,,,sign( fU,m) - IC E, sign( f u  )] 

Combining equations 30 and 34 with 6 and 10, we get 

[ tu,, ] = [ ;Q(W))(I,-~R,~;.~,~ - ~ ~ u s i g n ( ~ u ) )  + + A; 
hi+ -$R~I;lE,sign(f,) + A), + Ai 

where Al, = -&Q(ij,(t))Al, A; = -&Q(ij,(t))Az, A$ = -A3, and A i  = -A4. 
Equation 35 has the form 

4 4  = f(t, 4 t ) )  + d b ,  t )  
where f (5, t )  has been shown to be exponentially stable and 

where 

(33)  

(34) 

(35) 

and &(t)  contains the remaining terms, which are all bounded. Since &(t) is bounded, the exponentially 
stable system is robust to this perturbation. The concern, however, is with dl( t )  which contains part of the 
state and hence cannot be assumed bounded a priori. If exponential stability is preserved with d l ( t ) ,  then 
the system will be robust to the combined disturbance d( t ) .  

The nominal system is exponentially stable. Therefore, according to the Converse Lyapunov Theorem, 
a Lyapunov function and positive constants c1, c ~ ,  c3, and c4 exist 
followingg 

C l l l 4 t ) l l  5 V a t )  I CZI14t)ll 

I - C 3 1 1 4 t ) I l 2  

for the nominalyystem and satisfy the 

Using &(t) as the Lyapunov function candidate for the system perturbed by d l ( t ) ,  the derivative of V,(t) 
satisfies 

WXt)  V m  5 -c3ll4t)Il2 + l l ~ l l l l ~ l ~ ~ ~ l l  
which becomes 

VXt) I -C3l1X(t)1l2 + c4ll~(t)l l l l~l(t)l l  
Note that we can write 
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Aihi,v can be moved into &(t )  since the angular momentum of HST will be bounded. Equation 36 is then 

V p ( t )  I -C311~( t ) l l2  + C 4 6 1 I ~ ( t ) 1 l 2  (37) 
where IlA:II i 6. If 6 is sufficiently small, exponential stability is preserved, and the system is robust to the 
combined perturbation d( t )  = d l ( t )  + d2(t) 

Adding d2(t) back into the Lyapunov analysis, equation 37 becomes 

Ijp(t) 5 -C3l IZ( t ) l l2  + C 4 ~ l 1 4 t ) l 1 2  + c 4 l l 4 t ) l l I l ~ 2 ( t ) l l  (38) 

The bound on \ lA~ll ,  which establishes the size of 6, and the bound on Ild2(t)II are defined next. From 
equation 2, R(6qerr) can be written as 

W S Q e r r )  = (d-r - E & E e r r ) I 3  + 2 E e r r E t n -  - 2 q e r r S ( € e r r )  = I 3  - 2 E Z r r E e r r  + 2E e r r  ET e r r  - Q e r r S ( E e r r )  

= 13 + Y(verr, € e r r )  

(39) 

and 
I 

I, r' 

The angular momentum of HST is bounded as 

Extensive simulations of HST predict the maximum angular velocity as approximately 0.004 rad/sec.12 
Therefore, 

Applying Young's inequality to equation 38, and combining terms gives 
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Neglecting powers of q5err greater than 2 gives 

Computing the time average of equation 44, and taking the limit as T --f co, is 

If the error process is ergodic, the ensemble average is equivalent to the time average. The RMS bound is 
given as 

where u is the standard deviation of the error process, and all the constants are combined together as 
c = ac4 

Equation 45 serves to demonstrate that the angular momentum estimator is bounded, and converges 
to a ball sized by the bound given in 45 (given that the attitude is corrupted by errors meeting the above 
statistical assumptions). Equation 45 sizes the errors only to within the original unknown constants of the 
converse Lyapunov analysis. The characteristics of the estimator error will be addressed through numerical 
simulations. 

The instability resulting from d l ( t )  can be removed through the introduction of a 'leakage' term in 
equation 29. 

I l h , v l l R M S  5 l lZ ( t ) l lRMS 5 cu (45) 

ac3(c3-c4s). 

* . .  

(46) 
(Y 

h i , v  fi,, + -RY I-lZv,msign(fjv,m) - c~(hi,,)hi,v 
2 

where 

I , ,  where the scalar u, > 0 and (Ihi,vl(mas is the upper bound on the angular momeriturn established above. 
The additional term in 46 introduces an additional term into equation 38 

- T  .. -T 
ohi,,hi,v = uLi,v(hi,v - k , v )  = - u I I h , v I 1 2  + uh i , vh i , v  

Applying Young's inequality results in 

-T .. 1 1 
ghi,vhi,v i --gII&,vI12 2 + 5 c I I h i , v I 1 2  

Since hi,v is assumed to be bounded, the second term acts as another bounded disturbance. The first term, 
however, acts to stabilize the possible high noise instability identified above. In particular, if u, > 2c46 
then the system remains stable. The process to establish the bounds outlined above remains the same, with 
cg - c 4 6  + 30, replacing c3 - c46.  

Although it looks like this technique adds an additional disturbance, possibly stabilizing the system but 
adding an extra error, in fact this is not the case. Expanding the added term instead as 

- . .  
ahi,vhi,v = +i,v - LJTha+J = uhi,vk," - U I l ~ i , v 1 l 2  

u h i , v h i , v  I ; 0 [ 1 1 h i , v 1 1 ~  - 11L,v1121 

Or 
1 

Recall from above the u > 0 only if Ilki,,II > Ilhi,vll. Thus the added term is always negative; essentially the 
extra constraint in the adaptation law can only help convergence. 
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I, r. 

V. HST Pseudo-Linear Angular Velocity Estimator 

The pseudo-linear Kalman filter' is based on the model presented in reference 13. A brief overview of the 

The state of the filter is 
filter models is given first, followed by a summary of the actual algorithm equations. 

x=[ 21 
where q, is the HST inertial attitude and w, is the HST angular velocity in HST body coordinates. The 
quaternion is propagated according to equation 6 as 

The angular velocity is propagated using Euler's equation as 

Gu = I ~ l [ s ( I u W u ) w ~  + Tb,ul (48) 

where Tb , ,  is the gravity gradient torque from equation 32, transformed to body coordinates as 

where r;,, = R,r&,. Equation 49 can be written in a pseudo-linear form as 
I, c 

1 
I, A 

where M(r&,, q,) is defined in reference 14. Equation 50 is substituted into 48, and equations 47 and 48 are 
then augmented as 

where w(t), a zero-mean white noise process, is added to account for the lack of knowledge in the terms 
given in equations 47 through 50. F ( X )  is defined as 

X = F ( X ) X  + w ( t )  (51) 

The measurement used in the filter is qu,m given in equation 24. The measurement model for a given 
time t k  is simply 

qu,m,k = [ 14 0 ] xk = H X k  f vk 

where I4 is a 4x4 identity matrix and 'Uk is a zero-mean white measurement noise. 
The filter algorithm is implemented discretely as follows: 
Propagation: 

%+I(-) = %A(+) 
Q k  = eF(xk(f))At 

At = tk+l - t k  

&+I(-) = @ k P k ( + ) @ F  + Q 
where P is the filter covariance, Q is the process noise covariance matrix, and (-) and (+) indicate a priori 
and a posteriori values, respectively. 

Update: 

-%(+I = %d-) + K k ( Q u , m , k  - &(-)I 
Kk = HPk(- ) (HPk(- )HT + R)-l 

Pk(+) = ( I  - KkH)Pk( - ) ( I  - KkH)T  + KkRK,T 
where Kk is the filter gain matrix at time, t k ,  and R is the measurement noise covariance matrix. 
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VI. Simulation Results 

The algorithms outlined in sections I11 through V are tested with a simulation. The simulation includes 
two orbits of data, based on an actual HST ephemeris. The HST inertia i d 2  

-706 86868 449 kg .m2  
1491 449 93848 1 36046 -706 1491 

I,= [ 
1 Both algorithms are initially tested without any errors. In both cases, the initial attitude quaternions 

are identity, q,, = 8, = [0, O,O,  11. The initial HST angular velocity estimate is zero, Lj, = [O,O, 01, and the 
true initial angular velocity is w ,  = [-0.04, -0.01,0.14] deg/sec. 

Figures 1 and 2 are examples of the resulting angular velocity error from the nonlinear estimator and the 
pseudo-linear filter, respectively. The pseudo-linear algorithm converges very quickly, but the error oscillates. 
The nonlinear estimator has a longer convergence time, however the errors after convergence are very small. 

*I i 

0 1000 2 0 0 0  3 0 0 0  4000 5 0 0 0  6 0 0 0  7 0 0 0  8 0 0 0  9000 10000 
I 

0 

t4 :: 
3- 

- 0 . 0 5  I 

0 1000 2 0 0 0  3000 4000 5 0 0 0  6 0 0 0  7 0 0 0  8 0 0 0  9000 10000 
time (aec) 

Figure 1. Angular Velocity Errors: Nonlinear, No Attitude Measurement Errors 
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- 0 . 0 5  - time ( s e c )  

\ 
m 
z 
Ir 
I4 

- 0 . 0 5  

0 6  . ' . ' . " : '  

Figure 2. Angular Velocity Errors: Pseudo-Linear, No Attitude Measurement Errors 

Next, the measured attitude is chosen randomly with a 15 degree uncertainty. Figures 3 and 4 are samples 
of the angular velocity error for the nonlinear estimator and the pseudo-linear filter, respectively, using the 
same erroneous measured attitudes. As with the clean example above, the pseudo-linear filter converges 
faster, but is noisier than the nonlinear estimator in steady state. 

.. 

P 0 . 0 5  
\ m 

m.. . YY 

0 1000 2 0 0 0  3 0 0 0  4000 5 0 0 0  6 0 0 0  7 0 0 0  8 0 0 0  9 0 0 0  10000 
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Figure 3. Sample Angular Velocity Error: Nonlinear, Random 15 Degree Measured Attitude Error 

Table 1 lists the average of the final RMS angular velocity error for each of the 100 test cases, for both 
the nonlinear estimator and the pseudo-linear Kalman filter. The average errors are smaller for the nonlinear 
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Figure 4. Sample Angular Velocity Error: Pseudo-linear, Random 15 Degree Measured Attitude Error 

estimator on all three axes. 

Table 1. Average Final RMS Angular Velocity Errors 

Finally, figure 5 shows the RMS angular momentum at the end of two orbits for each of the 100 test 
cases. These results could be utilized in analyzing the numerical bound expressed in equation 45. 

VII. Conclusions 

A nonlinear algorithm is developed to estimate the rotation rates for a 'non-cooperative' target vehi- 
cle. The nonlinear algorithm determines the rotation rate through an estimation of the inertial angular 
momentum. The algorithm, designed for the Hubble Robotic Servicing mission, applies in particular to the 
scenario in which the batteries have died and HST is tumbling. The HRV design includes vision and feature 
recognition sensors capable of producing a relative attitude quaternion. Combining the relative attitude with 
the HRV inertial attitude produces the measured HST attitude for the estimation algorithm. The nonlinear 
algorithm is compared to a pseudo-linear Kalman filter. 

The two rate estimation approaches are compared using two orbits of HST data. Initially, the algorithms 
are compared with perfect measured attitudes. Both algorithms estimate the HST rotation rate. The 

is slower to converge; the steady state errors, however, do not oscillate and are very nearly zero. The two 
approaches are then compared for 100 different cases, with different random measured attitudes in each case. 
Again, both approaches estimate the rotation rate quite well. However, the nonlinear approach produces 
consistently smaller final rotation rate errors. 

1 pseudo-linear algorithm converges quickly, but oscillates slightly in steady state. The nonlinear approach 
, A  
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Figure 5. Final Angular Momentum Error RMS 

Future work will focus on improving the accuracy of the relative attitude quaternion computed from 
the vision and feature recognition sensors. Additional error sources, such as uncertainties in the spacecraft 
inertia, should be addressed, as well as a more rigorous study of the nonlinear estimator gains. Also, the 
algorithms will be coupled with a control scheme to study the closed loop behavior during a rendezvous or 
docking scenario. 
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